Решение матричной игры в смешанных стратегиях

Педагогика и воспитание » Теория игр » Решение матричной игры в смешанных стратегиях

Страница 1

Если платежная матрица не имеет седловой точки, т.е. a <b и , то поиск решения игры приводит к применению сложной стратегии, состоящей в случайном применении двух и более стратегий с определенными частотами.

Определение 1. Сложная стратегия, состоящая в случайном применении всех стратегий с определенными частотами, называется смешанной.

В игре, матрица которой имеет размерность m ´ n, стратегии первого игрока задаются наборами вероятностей (x1, x2, ., xm), с которыми игрок применяет свои чистые стратегии. Эти наборы можно рассмотреть как m-мерные векторы, для координат которых выполняются условия

, xi ³ 0, .

Аналогично для второго игрока наборы вероятностей определяют n-мерные векторы (y1, y2, ., yn), для координат которых выполняются условия

= 1, yj ³ 0, .

Выигрыш первого игрока при использовании смешанных стратегий определяют как математическое ожидание выигрыша, т.е. он равен

.

Теорема 1. (Неймана. Основная теорема теории игр) Каждая конечная игра имеет, по крайней мере, одно решение, возможно, в области смешанных стратегий. Применение оптимальной стратегии позволяет получить выигрыш, равный цене игры: a £ v £ b. Применение первым игроком оптимальной стратегии опт должно обеспечить ему при любых действиях второго игрока выигрыш не меньше цены игры. Поэтому выполняется соотношение

, .

Аналогично для второго игрока оптимальная стратегия опт должна обеспечить при любых стратегиях первого игрока проигрыш, не превышающий цену игры, т.е. справедливо соотношение

, .

Если платежная матрица не содержит седловой точки, то задача определения смешанной стратегии тем сложнее, чем больше размерность матрицы. Поэтому матрицы большой размерности целесообразно упростить, уменьшив их размерность путем вычеркивания дублирующих (одинаковых) и не доминирующих стратегий.

Определение 2. Дублирующими называются стратегии, у которых соответствующие элементы платежной матрицы одинаковы.

Определение 3. Если все элементы i-й строки платежной матрицы больше соответствующих элементов k-й строки, то i-я стратегия игрока А называется доминирующей над k-й стратегией. Если все элементы j-го столбца платежной матрицы меньше соответствующих элементов k-го столбца, то j-я стратегия игрока В называется доминирующей над k-й стратегией.

Пример. Рассмотрим игру, представленную платежной матрицей

.

Страницы: 1 2

Похожие статьи:

Классификация произведений художественной литературы для уроков истории
Художественная литература, используемая в преподавании истории, может быть разделена на две группы: литературные памятники изучаемой эпохи и историческую беллетристику. Что мы относим к литературным памятникам? Конечно, это произведения, созданные в ту эпоху, которую мы изучаем, т.е. произведения, ...

Изучение потребности учителей-логопедов в изучение учащихся
В ходе проведения исследования сформированности потребности учителей-логопедов в изучении учащихся были получены следующие данные (см. Табл. 1): 100% учителей-логопедов стремятся понять своих учеников. Это высокий показатель, т.к. педагогическая деятельность основана на взаимодействии учителя и уче ...

Взаимодействия детского сада и семьи
Работа с родителями результативна, если строится поэтапно, исходя из таких принципов, как: - доверительность отношений – этот принцип предполагает обеспечение веры родителей в профессиональную компетентность, тактичность и доброжелательность воспитателя, его умение понять и помочь решить проблемы с ...

Главное меню

Copyright © 2019 - All Rights Reserved - www.bravoschool.ru