Решение матричной игры в смешанных стратегиях

Педагогика и воспитание » Теория игр » Решение матричной игры в смешанных стратегиях

Страница 1

Если платежная матрица не имеет седловой точки, т.е. a <b и , то поиск решения игры приводит к применению сложной стратегии, состоящей в случайном применении двух и более стратегий с определенными частотами.

Определение 1. Сложная стратегия, состоящая в случайном применении всех стратегий с определенными частотами, называется смешанной.

В игре, матрица которой имеет размерность m ´ n, стратегии первого игрока задаются наборами вероятностей (x1, x2, ., xm), с которыми игрок применяет свои чистые стратегии. Эти наборы можно рассмотреть как m-мерные векторы, для координат которых выполняются условия

, xi ³ 0, .

Аналогично для второго игрока наборы вероятностей определяют n-мерные векторы (y1, y2, ., yn), для координат которых выполняются условия

= 1, yj ³ 0, .

Выигрыш первого игрока при использовании смешанных стратегий определяют как математическое ожидание выигрыша, т.е. он равен

.

Теорема 1. (Неймана. Основная теорема теории игр) Каждая конечная игра имеет, по крайней мере, одно решение, возможно, в области смешанных стратегий. Применение оптимальной стратегии позволяет получить выигрыш, равный цене игры: a £ v £ b. Применение первым игроком оптимальной стратегии опт должно обеспечить ему при любых действиях второго игрока выигрыш не меньше цены игры. Поэтому выполняется соотношение

, .

Аналогично для второго игрока оптимальная стратегия опт должна обеспечить при любых стратегиях первого игрока проигрыш, не превышающий цену игры, т.е. справедливо соотношение

, .

Если платежная матрица не содержит седловой точки, то задача определения смешанной стратегии тем сложнее, чем больше размерность матрицы. Поэтому матрицы большой размерности целесообразно упростить, уменьшив их размерность путем вычеркивания дублирующих (одинаковых) и не доминирующих стратегий.

Определение 2. Дублирующими называются стратегии, у которых соответствующие элементы платежной матрицы одинаковы.

Определение 3. Если все элементы i-й строки платежной матрицы больше соответствующих элементов k-й строки, то i-я стратегия игрока А называется доминирующей над k-й стратегией. Если все элементы j-го столбца платежной матрицы меньше соответствующих элементов k-го столбца, то j-я стратегия игрока В называется доминирующей над k-й стратегией.

Пример. Рассмотрим игру, представленную платежной матрицей

.

Страницы: 1 2

Похожие статьи:

Методические рекомендации по проведению недели географии «Памяти знаменитого полярника – Г.Я. Седова»
Неделя географии в школе является комплексным мероприятием, сочетающим в себе разнообразные формы внеурочной работы: вечера, конференции, смотры-конкурсы географических знаний, конкурсы газет, рефератов и т.д. Поэтому подготовка и проведение предметных недель требуют больших временных, ресурсных и ...

Общее положение высшего образования в жизни американцев
Уже сам факт поступления в один из наиболее престижных университетов США означает для выпускника средней школы определенный успех. Из трех миллионов человек, которые ежегодно оканчивают среднюю школу, примерно миллион продолжает учиться, чтобы получить высшее образование. Удачливых абитуриентов обы ...

Методика использования художественной литературы на уроке истории
Значение художественной литературы в решении познавательно-воспитательных задач обучения истории широко и разносторонне. Отсюда разнообразна и методика ее применения. Бывают уроки, которые можно почти целиком построить на материале художественной литературы. В качестве примера можно привести урок в ...

Главное меню

Copyright © 2020 - All Rights Reserved - www.bravoschool.ru