е) самостоятельное выполнение произвольных заданий.
Методы научного познания в обучении математике.
К ним относятся:
1) логические методы познания: индукция, дедукция, анализ, синтез, сравнение, аналогия, обобщение, конкретизация, моделирование, классификация, доказательство.;
2) эмпирические методы познания.
Наблюдение, описание, измерение и эксперимент, которые не являются характерными для математики. История развития математики свидетельствует о том, что эмпирические методы сыграли неоценимую роль в зарождении математических знаний, становлении математики как науки, самостоятельной теоретической дисциплины. Школьное обучение математике в определенной мере повторяет ее исторический путь развития. Использование средств наглядности и ТСО предполагает применение различных эмпирических методов, помогающих избежать пассивной созерцательности, активизировать действия учащихся, вовлечь их в целенаправленную работу.
Задача. Найти все такие натуральные числа, квадрат которых оканчивается цифрой 7.
Поиск решения данной задачи предполагает небольшой числовой эксперимент и формулирование гипотезы в процессе обобщения полученных данных.
Метод измерения применим к поиску решения планиметрических задач, когда производим инструментальное исследование чертежа данной фигуры. Измерение: вывод о сумме внутренних углов в произвольном треугольнике, для чего учащимся предлагается вырезать из бумаги остроугольный, тупоугольный треугольники, транспортиром измерить величины их углов и найти их сумму: . Опыт: по табличным данным или отмеченным точкам на координатной плоскости определить вид функции:
а) ; б)
; в)
; г)
.
Наблюдение: простые и составные числа; сформулировать определения. Простое ли число 1?
3) математические методы познания:
а) метод математических моделей. Математическая модель – описание какого-либо класса явлений реального мира на языке математики. Метод моделирования дает возможность применять математический аппарат к решению практических задач. Понятие числа, геометрической фигуры, уравнения, неравенства, функции, производной являются примерами математических моделей.
К методу математического моделирования в учебном процессе приходится прибегать при решении любой задачи с практическим содержанием. Чтобы решить такую задачу математическими средствами, ее необходимо вначале перевести на язык математики (построить модель), используя абстракции отождествления, идеализации, обобщения.
Задача. 6 коров за 3 дня съедают траву на участке 0,2 га, 8 коров за 4 дня съедают траву на участке 0,3 га. Сколько дней смогут пастись 12 коров на участке площадью 0,6 га? (Прирост травы на участке пропорционален его площади и времени).
x – количество травы, съедаемое одной коровой в день;
y – начальное количество травы на 1 га;
z – прирост травы на 1 га в день;
6 коров за 3 дня съедают траву на участке 0,2 га:
6*х*3=у*0,2+3*z*0,3.
8 коров за 4 дня съедают траву на участке 0,3 га:
8*х*4=у*0,3+4*z*0,3
Решим эту систему:
Определим первоначальное количество травы на одном га:
12 коров за t дней съедают траву на участке 0,6 га:
Похожие статьи:
Использование методов стимулирования в современной школе
Педагогический процесс характеризуется разносторонностью содержания, исключительным богатством и мобильностью организованных форм. С этим непосредственно связано многообразие методов осуществления педагогического процесса. Есть методы, отражающие содержание и специфику обучения, а так же воспитания ...
Проблема развития навыков сложения и вычитания у учащихся школы VIII вида
Трудности в обучении математике учащихся школы VIII вида обусловливаются косностью и тугоподвижностью процессов мышления, связанных с инертностью нервных процессов. Проявление этих процессов мышления умственно отсталых при обучении математике многообразно. Отмечается «застревание» на принятом спосо ...
Развитие лексических умений посредством поэтического материала на уроке
английского языка
В рамках современной лингвистики необходимо отметить, что язык по сути является иерархической структурой, состоящей из ряда уровней, каждый из которых характеризуется собственным набором языковых знаков. На интересующем нас лексическом уровне функционируют такие единицы как: слова, фразеологические ...