Методика проведения зачетного урока

Страница 1

Для систематического контроля за достижением обязательных результатов обучения в ходе учебного процесса целесообразно выбрать такую форму проверки, как зачет.

Зачет – это специальный этап контроля, целью которого является проверка достижения учащимися уровня обязательной подготовки .

С помощью зачетов проверяется овладение различными порциями учебного материала. В соответствии с этим, их можно разделить на тематические и текущие.

Тематические зачеты проводят в конце изучения темы и направлены на проверку усвоения ее материала в целом. Учитель заранее определяет задания для тематического зачетного урока, которые включает теоретический и практический материал, продумывает этапы урока и их количество, занимательный материал.

Зачетный урок такого типа состоит из нескольких этапов:

1 этап – проведение словарного диктанта, где учащимся предлагается написать под диктовку 10-15 слов, после чего работа каждого ученика будет оценена учителем;

2 этап - математический диктант, который может включать задания разного характера: знание математических формул, определений, нумерации, сравнение чисел, знание математических операции между числами и нахождение их значения;

3 этап - мини-экзамен, где вначале дается инструктаж учителя о его проведении, затем дети получают билеты, которые содержат один теоретический вопрос, подготовка к которому занимает время в течение 1-7 минут, а затем отвечают на вопрос билета учителю или ученику-экзаменатору;

4 этап – письмена работа, включающая тесты, контрольную работу, решение задач и примеров, заданий занимательного характера в виде викторины, решения кроссвордов.

Текущие зачеты проводятся систематически в ходе изучения по небольшим, законченным темам. От тематических они отличаются тем, что охватывают меньший по объему материал; поэтому, как правило, на их проведение не требуется проводить целый урок .

Структура урока-зачета:

1 этап – опрос по определениям 10-15 минут.

2 этап – решение контрольной работы или теста.

Оба вида зачета можно проводить, условно говоря, в открытой или закрытой форме. В первом случае учащиеся предварительно знакомятся со списком задач обязательного уровня. Во втором случае этот список в явном виде учащимся не предъявляется. Однако это не означает, что учащимся совсем неизвестно, какие типы задач относятся к обязательным. В ходе изучения материала учитель акцентирует внимание учеников на задачах обязательного уровня, подчеркивая, что подобные им необходимо будет решать на зачете.

Структура урока-зачета, прежде всего должна соответствовать логике процесса обобщения и систематизации знаний, в котором предполагается следующая последовательность действий: от восприятия, осмысления и обобщения отдельных фактов к формированию у учащихся понятий, их категории и систем, от них к усвоению все более сложной системы знаний, к овладению основными теориями и ведущими идеями той или иной науки. Этой последовательности должны соответствовать основные звенья урока данного типа.

Возникает очень много трудностей в подготовке и проведении зачетных уроков:

- необходимо проверить теоретические знания: определения, формулы, алгоритмы, теоремы и т.д. В тоже время необходимо оценить уровень практических умений работы, следовательно, зачетный урок может занимать 1 или 2 часа;

Страницы: 1 2 3

Похожие статьи:

Критика и насмешка
Социализированный язык детей, носящий неинтеллектуальный характер, за исключением вопросов и ответов, может быть разделен на две категории, очень просто различаемые: приказания, с одной стороны, и критика и насмешка — с другой. Вот несколько примеров критики, насмешки, и т.п., которые с первого взг ...

Вопросы выбора колледжа или университета
При выборе университета или колледжа американцам нужно узнавать не только о требованиях для поступления в учебное заведение (и о плате за учение), им приходится также думать и о многом другом. Им необходимо знать следующее: Какой диплом дает колледж? Каков срок обучения? На факультетах университета ...

Решение игр графическим методом
Графический метод применим к играм, в которых хотя бы один игрок имеет только две стратегии. Первый случай. Рассмотрим игру (2 ´ 2) с матрицей без седловой точки. Решением игры являются смешанные стратегии игроков (x1, x2) и (y1, y2), где x1 - вероятность применения первым игроком первой стра ...

Главное меню

Copyright © 2019 - All Rights Reserved - www.bravoschool.ru