Сведение матричной игры к задаче линейного программирования

Педагогика и воспитание » Теория игр » Сведение матричной игры к задаче линейного программирования

Страница 1

Теория игр находится в тесной связи с линейным программированием, так как каждая конечная игра двух лиц с нулевой суммой может быть представлена как задача линейного программирования и решена симплексным методом и, наоборот, каждая задача линейного программирования может быть представлена как конечная игра двух лиц с нулевой суммой. Рассмотрим игру двух лиц с нулевой суммой, заданную платежной матрицей

.

Если платежная матрица не имеет седловой точки, т.е. a <b и , то решение игры представлено в смешанных стратегиях (x1, x2, ., xm) и (y1, y2, ., yn). Применение первым игроком оптимальной стратегии опт должно обеспечить ему при любых действиях второго игрока выигрыш не меньше цены игры.

, .

Рассмотрим задачу отыскания оптимальной стратегии игрока А, для которой имеют место ограничения

Величина v неизвестна, однако можно считать, что цена игры v > 0. Последнее условие выполняется всегда, если все элементы платежной матрицы неотрицательны, а этого можно достигнуть, прибавив ко всем элементам матрицы некоторое положительное число.

Преобразуем систему ограничений, разделив все члены неравенств на v.

(1)

где

, . (2)

По условию x1 + x2 + … +xm = 1.

Разделим обе части этого равенства на v.

.

Оптимальная стратегия (x1, x2, ., xm) игрока А должна максимизировать величину v, следовательно, функция

(3)

должна принимать минимальное значение.

Таким образом, получена задача линейного программирования: найти минимум целевой функции (3) при ограничениях (1), причем на переменные наложено условие неотрицательности (2). Решая ее, находим значения , и величину 1/v, затем отыскиваются значения xi = vti.

Аналогично для второго игрока оптимальная стратегия опт должна обеспечить при любых стратегиях первого игрока проигрыш, не превышающий цену игры.

, .

Рассмотрим задачу отыскания оптимальной стратегии игрока B, для которой имеют место ограничения

Преобразуем систему ограничений, разделив все члены неравенств на v.

Страницы: 1 2

Похожие статьи:

Опытно-педагогическая работа по профилактике отклоняющегося поведения подростков в ПДН ОУУП и ПДН Отдела МВД России по Миллеровскому району
База практики: Отделение по делам несовершеннолетних отдела участковых уполномоченных полиции по делам несовершеннолетних Отдела Министерства внутренних дел Российской Федерации по Миллеровскому району. Фактический адрес учреждения: Российская Федерация, 346130, Ростовская область, Миллеровский рай ...

Традиции и история высшего образования в Америке
Первые университеты в Америке Когда в 17 веке заселялись американские колонии, ставшие позднее Соединенными Штатами Америки, в мире уже существовали очень древние университеты. Каирскому университету Аль-Ажар в то время насчитывалось уже более 600 лет. В Италии уже несколько столетий существовал Ун ...

Методы и приемы обучения в начальной школе
Проблема методов обучения является одной из важнейших в педагогической науке и в практике школьного обучения, особенно если это касается начальной школы, так как учебные методы - это главные инструменты, с помощью которых учитель вооружает учащихся основами наук, развивает у них познавательные спос ...

Главное меню

Copyright © 2022 - All Rights Reserved - www.bravoschool.ru